Hybrid Si nanocones/PEDOT:PSS solar cell
نویسندگان
چکیده
UNLABELLED Periodic silicon nanocones (SiNCs) with different periodicities are fabricated by dry etching of a Si substrate patterned using monolayer polystyrene (PS) nanospheres as a mask. Hybrid Si/ PEDOT PSS solar cells based on the SiNCs are then fabricated and characterized in terms of their optical, electrical, and photovoltaic properties. The optical properties of the SiNCs are also investigated using theoretical simulation based on the finite element method. The SiNCs reveal excellent light trapping ability as compared to a planar Si substrate. It is found that the power conversion efficiency (PCE) of the hybrid cells decreases with increasing periodicity of the SiNCs. The highest PCE of 7.1% is achieved for the SiNC hybrid cell with a 400-nm periodicity, due to the strong light trapping near the peak of the solar spectrum and better current collection efficiency. PACS 81.07.-b; 81.16.-c; 88.40.hj.
منابع مشابه
Improved Separation and Collection of Charge Carriers in Micro-Pyramidal-Structured Silicon/PEDOT:PSS Hybrid Solar Cells
Silicon (Si)/organic polymer hybrid solar cells have great potential for becoming cost-effective and efficient energy-harvesting devices. We report herein on the effects of polymer coverage and the rear electrode on the device performance of Si/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid solar cells with micro-pyramidal structures. These hybrid solar cells provid...
متن کاملC1nr10629e 3631..3634
A solution filling and drying method has been demonstrated to fabricate Si/PEDOT:PSS core/shell nanowire arrays for hybrid solar cells. The hybrid core/shell nanowire arrays show excellent broadband anti-reflection, and resulting hybrid solar cells absorb about 88% of AM 1.5G photons in the 300–1100 nm range. The power conversion efficiency (PCE) of the hybrid solar cell reaches 6.35%, and is p...
متن کاملHybrid silicon nanocone-polymer solar cells.
Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanoc...
متن کاملInterfacial micropore defect formation in PEDOT:PSS-Si hybrid solar cells probed by TOF-SIMS 3D chemical imaging.
Conducting p-type polymer layers on n-type Si have been widely studied for the fabrication of cost-effective hybrid solar cells. In this work, time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to provide three-dimensional chemical imaging of the interface between poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) and SiOx/Si in a hybrid solar cell. To minimize st...
متن کاملImproved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation
The PEDOT:PSS is often used as the window layer in the normal structured PEDOT:PSS/c-Si hybrid solar cell (HSC), leading to significantly reduced response, especially in red and near-infrared region. By depositing the PEDOT:PSS on the rear side of the c-Si wafer, we developed an inverted structured HSC with much higher solar cell response in the red and near-infrared spectrum. Passivating the o...
متن کامل